Towards all-order Laurent expansion of generalized hypergeometric functions around rational values of parameters

نویسندگان

  • Mikhail Yu. Kalmykov
  • Bernd A. Kniehl
چکیده

We prove the following theorems: 1) The Laurent expansions in ε of the Gauss hypergeometric functions 2F1(I1 + aε, I2 + bε; I3 + p q + cε; z), 2F1(I1 + p q + aε, I2 + p q + bε; I3+ p q + cε; z) and 2F1(I1+ p q +aε, I2+ bε; I3 + p q + cε; z), where I1, I2, I3, p, q are arbitrary integers, a, b, c are arbitrary numbers and ε is an infinitesimal parameter, are expressible in terms of multiple polylogarithms of q-roots of unity with coefficients that are ratios of polynomials; 2) The Laurent expansion of the Gauss hypergeometric function 2F1(I1 + p q + aε, I2 + bε; I3 + cε; z) is expressible in terms of multiple polylogarithms of q-roots of unity times powers of logarithm with coefficients that are ratios of polynomials; 3) The multiple inverse rational sums ∑∞ j=1 Γ(j) Γ “ 1+j− p q ” z jcSa1(j − 1) · · · Sap(j − 1) and the multiple rational sums ∑∞ j=1 Γ “

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All order epsilon-expansion of Gauss hypergeometric functions with integer and half/integer values of parameters

It is proved that the Laurent expansion of the following Gauss hypergeometric functions, are an arbitrary integer nonnegative numbers, a, b, c are an arbitrary numbers and ε is an arbitrary small parameters, are expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with polynomial coefficients. An efficient algorithm for the calculation of the higher-order coefficients o...

متن کامل

On the all-order epsilon-expansion of generalized hypergeometric functions with integer values of parameters

We continue our study of the construction of analytical coefficients of the epsilon-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we apply the approach of obtaining iterated solutions to the differential equations associated with hypergeometric functions to prove the following result: Theorem 1: The epsilon-expansion of a generalized hypergeome...

متن کامل

All-Order ε-Expansion of Gauss Hypergeometric Functions with Integer and Half-Integer Values of Parameters

It is proved that the Laurent expansion of the following Gauss hypergeometric functions, are an arbitrary integer nonnegative numbers, a, b, c are an arbitrary numbers and ε is an arbitrary small parameters, are expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with polynomial coefficients. An efficient algorithm for the calculation of the higher-order coefficients o...

متن کامل

/ 04 06 26 9 v 1 3 0 Ju n 20 04 Series and ε - expansion of the hypergeometric functions

Recent progress in analytical calculation of the multiple {inverse, binomial, harmonic} sums , related with ε-expansion of the hypergeometric function of one variable are discussed. 1. In the framework of the dimensional regular-ization [1] many Feynman diagrams can be written as hypergeometric series of several variables [2] (some of them can be equal to the rational numbers). This result can ...

متن کامل

On a result related to transformations and summations of generalized hypergeometric series

We deduce an explicit representation for the coefficients in a finite expansion of a certain class of generalized hypergeometric functions that contain multiple pairs of numeratorial and denominatorial parameters differing by positive integers. The expansion alluded to is given in terms of these coefficients and hypergeometric functions of lower order. Applications to Euler and Kummer-type tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008